Index Calculus Attack for Hyperelliptic Curves of Small Genus
نویسنده
چکیده
We present a variation of the index calculus attack by Gaudry which can be used to solve the discrete logarithm problem in the Jacobian of hyperelliptic curves. The new algorithm has a running time which is better than the original index calculus attack and the Rho method (and other square-root algorithms) for curves of genus ≥ 3. We also describe another improvement for curves of genus ≥ 4 (slightly slower, but less dependent on memory space) initially mentioned by Harley and used in a number of papers, but never analyzed in details.
منابع مشابه
Improvement of ThLeriault Algorithm of Index Calculus for Jacobian of Hyperelliptic Curves of Small Genus
Gaudry present a variation of index calculus attack for solving the DLP in the Jacobian of hyperelliptic curves. Harley and Thérialut improve these kind of algorithm. Here, we will present a variation of these kind of algorithm, which is faster than previous ones.
متن کاملIndex calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem
We propose an index calculus algorithm for the discrete logarithm problem on general abelian varieties of small dimension. The main difference with the previous approaches is that we do not make use of any embedding into the Jacobian of a well-suited curve. We apply this algorithm to the Weil restriction of elliptic curves and hyperelliptic curves over small degree extension fields. In particul...
متن کاملIndex calculus for abelian varieties and the elliptic curve discrete logarithm problem
We propose an index calculus algorithm for the discrete logarithm problem on general abelian varieties. The main difference with the previous approaches is that we do not make use of any embedding into the Jacobian of a well-suited curve. We apply this algorithm to the Weil restriction of elliptic curves and hyperelliptic curves over small degree extension fields. In particular, our attack can ...
متن کاملIsogenies and the Discrete Logarithm Problem on Jacobians of Genus 3 Hyperelliptic Curves
We describe the use of explicit isogenies to reduce Discrete Logarithm Problems (DLPs) on Jacobians of hyperelliptic genus 3 curves to Jacobians of non-hyperelliptic genus 3 curves, which are vulnerable to faster index calculus attacks. We provide algorithms which compute an isogeny with kernel isomorphic to (Z/2Z) for any hyperelliptic genus 3 curve. These algorithms provide a rational isogeny...
متن کاملElliptic curves with weak coverings over cubic extensions of finite fields with odd characteristic
In this paper, we present a classification of elliptic curves defined over a cubic extension of a finite field with odd characteristic which have coverings over the finite field therefore subjected to the GHS attack. The densities of these weak curves, with hyperelliptic and non-hyperelliptic coverings, are then analyzed respectively. In particular, we show, for elliptic curves defined by Legen...
متن کامل